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1 Introduction

1.1 Dissertation topic and its relevance.

In this thesis we consider one- and multi-stage formulations of the shortest path

problem (SPP), where either the arc costs/travel times or the structure of the

network is subject to uncertainty. More specifically, we consider the following

two alternative problem settings:

− Model I: the structure of the network is known to the decision-maker a

priori but the arc costs/travel times are subject to uncertainty.

− Model II: the arc/costs travel times in a given network are deterministic

but the structure of the network (e.g., the existence of some arcs along

with their costs) is subject to uncertainty.

In both cases we formulate the problem as a dynamic or repetitive zero-sum

game between two decision-makers, namely, a user and an attacker. The user

traverses between two fixed nodes in a given network, whereas the attacker con-

trols in some predefined way the arc costs or their probability distribution. One

of the decision-makers has incomplete information about either the distribution

of arc costs and/or the structure of the network and attempts to learn some

additional information by repetitive interactions with the other decision-maker.

With respect to the first model, Model I, it can be argued that uncertainty

in arc travel times may arise due to road capacity variation or traffic conditions.

Furthermore, in a number of practical applications the arc costs/travel times

in a given network are only observable through a finite training data set [1].

As a result, the uncertainty in arc travel times may influence the structure and

quality of routing decisions; see, e.g., [2].

The first question arising in the context of Model I is how to transform

the available historical data to a decision of the underlying network optimiza-

tion problem. For example, this problem can be addressed with a distribution-

ally robust optimization (DRO) approach, where the distribution of arc travel
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times is described by an ambiguity set or a family of distributions that are

consistent with the available data; see, e.g., the related studies in [3, 4, 5, 6].

Given some family of admissible distributions, the decision-maker is supposed

to optimize a measure of risk under the worst-case possible distribution of the

uncertain parameters. Put differently, the idea of DRO approach is to find a

compromise between the lack of distributional information (as in robust opti-

mization [7, 8]) and complete knowledge of the underlying probability distribu-

tion (as in stochastic programming [9]).

The second question arising is whether the data can be collected by the user

dynamically while traversing through the network. In this regard, we consider

a multi-stage version of the shortest path problem, where some information

about the distribution of arc travel times can be refined at particular nodes

of the user’s path. In other words, in contrast to the one-stage model, in the

considered multi-stage problem setting both the user and the attacker are able

to adjust their decisions dynamically. Our results for Model I can be found in

[10] and [11] (the second work is an unpublished preprint).

With respect to the second model, Model II, we focus on a class of network

interdiction problems, where the user traverses in the network (e.g., between two

fixed nodes, a source and a destination), while the attacker aims to disrupt to

the maximum possible extent (or completely stop) the user’s movement through

the network. The key feature of our model is that the attacker has incomplete

initial information about the network including its structure and costs but learns

this information by observing the user’s actions (i.e., the user’s path) in each

decision epoch. Furthermore, in contrast to the related studies in [12, 13], we

consider the user’s perspective.

The learning component in Model II can be motivated by practical set-

tings, where the attacker can observe the user’s actions (for example, by using

a satellite or a drone), but cannot immediately react upon those actions; see,

e.g., [14]. In particular, we assume that this information feedback is determin-

istic and perfect, that is, the attacker learns about the existence and the exact

costs of the arcs traversed by the user in the previous decision epochs.
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As for Model I, Model II can be considered both in one- and multi-stage

problem settings. For a single decision epoch the problem can be viewed as a

shortest path interdiction problem; see, e.g., [15], where the attacker attempts to

maximize the cost of user’s shortest path subject to some budgetary constraints.

In the multi-stage model, the attacker may potentially update its information

about the structure and the costs in the network by observing the user’s path.

For this reason, we consider a repeated interaction between the user and the

attacker, where the user attempts to minimize its cumulative loss over multiple

decision epochs. Our results for Model II can be found in [16].

1.2 Related literature

With respect to Model I, several studies consider one-stage versions of the dis-

tributionally robust shortest path problem (DRSPP); see, e.g., [1, 17, 18, 19].

Specifically, the authors consider different forms of ambiguity sets including

moment-based ambiguity sets [18, 19] and ambiguity sets based on a distance

metric from the empirical distribution of the data [1].

Typically, in a one-stage DRSPP the user picks a path here-and-now, before

the realization of uncertainty. Therefore, the problem can be viewed as a min-

max problem, where the user attempts to minimize its expected loss under the

worst-case distribution of arc travel times. Most recent solution approaches to

the resulting bi-level problems rely on the duality results for moment problems

[20, 21]. That is, under some assumptions on the geometry of ambiguity sets

and functional properties of the objective function, the one-stage DRSPP can be

recast as either linear or non-linear mixed-integer programming (MIP) problem.

It has been also shown that DRO may address dynamic or, equivalently,

multi-stage optimization problems, where the decisions adapt to the uncertain

outcomes as they unfold in stages; see, e.g., [5, 6, 22, 23]. In general, multi-stage

DRO problems are computationally intractable since the recourse decisions (i.e.,

the decisions affected by uncertainty) can be modeled as arbitrary functions of

the uncertain parameters [21, 24]. To the best of our knowledge, the multi-stage

DRSPP is considered by relatively few authors and there are only studies that

5



may account the shortest path problem as a special case; see, e.g., [22, 25].

In conclusion, we would like to refer to a multi-stage shortest path interdic-

tion model proposed by Sefair et al. [26] and a multi-stage robust MIP problem

formulation of Bertsimas and Dunning [27]. Despite the fact that these mod-

els are deterministic, they provide some interesting insights for the multi-stage

DRSPP considered in the current thesis.

Specifically, in [26] the attacker can block a subset of arcs any time the user

reaches a node in the network. After that, the user can respond by dynamically

altering its path. Naturally, the problem unfolds in a number of stages, where

at each stage the attacker blocks a subset of arcs emanated from the current

user’s position and the user picks a subsequent node of its path. Furthermore,

the total number of arcs that can be blocked by the attacker is bounded from

above by the attacker’s budget. In this thesis, similar to the problem setting in

[26], we introduce some auxiliary distributional constraints associated with the

arcs emanated from the current user’s position.

In the model of Bertsimas and Duning [27] the uncertain problem parameters

are only known to reside within a polyhedral uncertainty set. The uncertainty

set is partitioned into a number of disjoint polyhedrons and the recourse deci-

sions are assumed to be piecewise constant functions on the generated subsets.

This modeling approach enables to obtain approximations of the multi-stage

problem, where the quality of approximation is adjusted by the choice of an ap-

propriate partition scheme. In the following, we demonstrate that in our multi-

stage formulation of the shortest path problem a similar piecewise constant

construction of decision rules arises naturally due to auxiliary distributional

constraints observed by the user while traversing through the network.

With respect to Model II, network interdiction forms a broad class of deter-

ministic and stochastic optimization problems with applications mostly arising

in the military, law-enforcement and infectious disease control contexts, see the

surveys in [28, 29, 30, 31, 32] and the references therein. The network interdic-

tion problems mostly focus on the attacker’s perspective. In other words, the

attacker is usually viewed as a leader, while the user plays as a follower in the
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considered game.

While most of the network interdiction literature consider deterministic set-

tings, a number of more recent works consider the network interdiction problem

in stochastic settings; see, e.g., [33, 34] and the survey in [35]. Typically such

models assume that either the outcomes of attacker’s actions are uncertain or

there is uncertainty with respect to the user’s actions.

Our multi-stage network interdiction model is motivated and builds upon

the recent works of Borrero et al. in [12, 13]. Specifically, in the network model

in [12] the attacker and the user interact sequentially over multiple decision

epochs (or rounds). In each decision epoch, the attacker can block at most k

arcs for the duration of the current decision epoch, while the user is assumed to

be greedy, i.e., in each round it traverses along the shortest path between two

fixed nodes in the interdicted network. By observing the user’s decisions, the

attacker is able to update its information about the structure of the network

and the cost of arcs traversed by the user.

The authors in [12] show that greedy attacker’s policies have a number

of attractive theoretical properties in the aforementioned multi-stage problem

setting. In addition to these properties, the results of computational experi-

ments in [12] also confirm the superiority of greedy attacker’s policies against

several other benchmark policies. Finally, in [13] the authors generalize the the-

oretical results and greedy policies from [12] to a more general class of max-min

linear mixed-integer programming problems.

1.3 Our approach and contributions

Model I. Similar to the study of Wiesemann et al. [4], we assume that the

family of admissible distributions in our setting is described by some first-order

moment constraints with respect to subsets of arcs and individual probability

constraints for particular arcs. We argue that in contrast to the moment-based

ambiguity sets [3] or ambiguity sets based on a distance metric from the empir-

ical distribution [36, 37], our distributional constraints allow incomplete knowl-

edge of the training data set. Our contributions for the one-stage DRSPP can
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be summarized as follows:

� We demonstrate that our distributional constraints can be constructed in

a unified way from real-data observations.

� We show that the problem without the first-order moment constraints is

polynomially solvable and identify a closed form of the worst-case distri-

bution in this particular case.

� In the general case and in contrast to the studies in [18, 19], we obtain

robust and linear mixed-integer programming (MIP) reformulations of the

one-stage DRSPP.

� We conduct a numerical study of the proposed approach and provide a

comparison with some standard robust and distributionally robust opti-

mization techniques.

In the multi-stage formulation of DRSPP we attempt to address the follow-

ing research questions:

Q1. Is there a benefit for the user to alter the chosen path, if it observes

some additional distributional information while traversing through the

network?

Q2. How much can the user gain by leveraging such adaptive decisions?

Q3. Can the resulting multi-stage formulation be solved at hand using off-the-

shelf MIP solvers?

We attempt to address a dynamic revelation of distributional information

to the user by introducing some auxiliary distributional constraints the can

be verified at particular nodes of the user’s path. Simply speaking, the user

forms a list of auxiliary constraints at the beginning of the game. Then for

each constraint in the list the attacker decides whether it is satisfied or not and

reveals its response, i.e., “yes” or “no”, to the user as soon as the user achieves

the respective node in the network.

Our contributions for the multi-stage model can be summarized as follows:
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� We describe two classes of non-anticipativity constraints for the multi-

stage DRSPP, for acyclic and general graphs, respectively. These con-

straints certify that the user’s decision at a current stage cannot depend

on future attacker’s responses.

� Under some mild assumptions we reformulate the multi-stage DRSPP as

a one potentially large linear MIP problem. These results address our

research question Q3.

� The obtained MIP reformulation is used in our numerical study, where

its computational tractability and the quality of adaptive decisions is ex-

plored numerically. Hence, we address the research questions Q1 and Q2.

� From the practical perspective, we demonstrate that the auxiliary con-

straints can be verified in an online manner using information from Blue-

tooth sensors placed at particular nodes of the network.

Model II. In contrast to Model I, we assume that the arc costs/travel times in

Model II are deterministic, but the attacker has incomplete information about

the network structure and costs. By observing the paths traversed by the user,

the attacker may learn about the existence and precise costs of particular arcs

and adjust its decisions in the subsequent decision epochs.

As outlined earlier, the studies in [12, 13], similar to the vast majority of

the related interdiction literature, focus on the attacker’s perspective. However,

taking into account a number of attractive theoretical properties of greedy at-

tacker’s policies, it seems to be interesting to explore optimal user’s policies

assuming that the attacker follows a myopic greedy policy in each decision

epoch. Formally, we introduce the following research questions:

Q1’. If we assume that the attacker is greedy, what are good strategic policies

for the user against the outlined greedy attacker’s policy?

Q2’. Do such policies have any interesting structural properties and how can

they be constructed?
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Q3’. Are these policies more preferable for the user than a myopic shortest-path

based greedy policy?

Our contributions for Model II can be summarized as follows:

� We show that the user’s problem is NP -hard even in the case of two

decision epochs. This result is established for networks where the k-most

vital arcs problem is polynomially solvable.

� We demonstrate that under some additional assumption an optimal user’s

decision in the case of two decision epochs is either greedy or consists of

two distinct paths that intersect with the overall shortest path. Therefore,

we address the research questions Q1’ and Q2’.

� The outlined theoretical properties are used to develop a heuristic algo-

rithm for the user in a more general setting.

� The obtained computational results demonstrate superiority of the pro-

posed heuristic approach against a myopic greedy policy for several classes

of synthetic network instances and types of feedback obtained by the at-

tacker. Therefore, we address the research question Q3’.

1.4 Publications and approbation of the research

The results of this work are published in a range of scientific papers in interna-

tional peer-reviewed journals.

First-tier publications:

� Sergey S. Ketkov, Oleg A. Prokopyev, On Greedy and Strategic Evaders

in Sequential Interdiction Settings with Incomplete Information, Omega,

92, 102161 (2020), Q1;

� Sergey S. Ketkov, Oleg A. Prokopyev, Evgenii P. Burashnikov, An ap-

proach to the distributionally robust shortest path problem, Computers

& Operations Research, 130, 105212 (2021), Q2.
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Other publications (optional):

� Sergey S. Ketkov, On the multi-stage shortest path problem under distri-

butional uncertainty, arXiv preprint arXiv:2205.09200 (2022).

Personal contribution of the author of the dissertation. The author

of the dissertation carried out the proof of the main theoretical results, data

collection, experiments, analyzed and interpreted the results of experiments,

wrote the text. In the first and the second studies, the scientific supervisor, O.A.

Prokopyev, provided some ideas concerning problem formulations, assistance in

editing the text and responses to the comments of reviewers. The co-author of

the second work, E.P. Burashnikov, investigated the ideas of some experiments

and provided comments that helped improve the quality of the work.

Reports at conferences and seminars (optional):

� Mathematical Optimization Theory and Operations Research, Novosi-

birsk, 6 − 10 July 2020, an oral presentation “An approach to the dis-

tributionally robust shortest path problem”;

� Mathematical Optimization Theory and Operations Research, Irkutsk,

4 − 10 July 2021, an oral presentation “On a class of data-driven com-

binatorial optimization problems under uncertainty: a distributionally

robust approach”;

� Scientific seminar of Laboratory of algorithms and technologies for net-

work analysis, 29.04.2020, an oral presentation “On the multi-stage dis-

tributionally robust shortest path problem”;

� The 12th International Conference on Network Analysis NET 2022, 23−25

May 2022, an oral presentation “On the multi-stage shortest path problem

under distributional uncertainty”;

� The 7th International Conference on Network Analysis, Nizhny Novgorod,

May 2017, an oral presentation “Evader’s models in sequential network

interdiction”;
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� Modern Problems in Mathematics and its Applications, Yekaterinburg,

4 − 10 February 2018, an oral presentation: “On a Strategic Evader in

Sequential Interdiction with Incomplete Information”.

2 Model I: problem formulation and solution

approach

Notation. All vectors and matrices are labeled by bold letters. For a network

G := (N,A, c) we denote by N and A its sets of nodes and directed arcs,

respectively, whereas c is a nonnegative cost vector. For each node i ∈ N we

refer to RSi (FSi) as the set of arcs directed out of (and into) node i. Let s and

f be a source and a destination node, respectively; also, let Psf(G) be a set of

all simple directed paths from s to f in the network G. Any path P ∈ Psf(G)

is given by a sequence of arcs (s, v1),(v1, v2),. . .,(v|P |−1, f), which we introduce

as {s→ v1 → . . .→ v|P |−1 → t} for convenience.

The space of all probability distributions on Rm for some m ∈ Z>0 is denoted

asQ0(Rm). For each a ∈ A we denote by Qa ∈ Q0(R) the marginal distributions

induced by some joint probability distribution Q ∈ Q0(R|A|).

2.1 One-stage problem

We consider a directed weighted connected graph G := (N,A, c), where a set

of all feasible path-incidence vectors is given by:

Y =
{
y ∈ {0, 1}|A| :

∑
a∈FSi

ya −
∑
a∈RSi

ya =


1, if i = s

−1 if i = f

0, otherwise

∀i ∈ N (1a)

∑
a∈FSi

ya ≤ 1 ∀i ∈ N
}

(1b)
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The constraints (1a) are standard flow conservation constraints, whereas the

constraints (1b) ensure that each node is visited by the user at most once. As

the cost vector is nonnegative by construction, the latter condition is of interest

only for the multi-stage DRSPP; see our assumption A5 in Section 2.2.

We assume that the user has the following partial information about the

distribution Q of the cost vector c. First, the costs of particular arcs a ∈ A are

subject to individual probability constraints of the form:

Q{ca ∈ [l(j)a , u(j)
a ]} ∈ [q(j)

a
, q(j)

a ] ∀j ∈ Da, a ∈ A, (2)

where [l
(j)
a , u

(j)
a ] ⊆ [la, ua], j ∈ Da = {1, . . . , da}, is a finite set of subintervals;

q(j)
a

and q
(j)
a are contained in [0, 1] and bound the probability that the random

cost ca belongs to the i-th subinterval. In particular, we assume that for each

a ∈ A and j = 1 the constraints

Q{ca ∈ [l(j)a , u(j)
a ]} ∈ [q(j)

a
, q(j)

a ]

are support constraints with l
(j)
a = la, u

(j)
a = ua and q(j)

a
= q

(j)
a = 1 for some

la, ua ∈ R>0 ∪ {0}.
Finally, for a real-valued matrix B ∈ R|A|×k and a vector b ∈ Rk, k ∈ Z+,

we introduce linear expectation constraints of the form:

EQ{Bc} ≤ b (3)

Thus, the distribution Q of the cost vector c is assumed to belong to an

ambiguity set Q formed by all distributions that satisfy the distributional con-

straints (2) and (3), i.e.,

Q :=
{
Q ∈ Q0(R|A|) : Q satisfies the constraints (2) and (3)

}
(4)

By introducing a linear loss function `(c,y) := c>y we derive a one-stage
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or static version of DRSPP:

z∗static := min
y∈Y

max
Q∈Q

EQ{c>y}, (Fos)

where the set of feasible decisions Y and the ambiguity set Q are given by the

equations (1) and (4), respectively.

In addition, we make the following assumptions:

A1. Both the user and the attacker have complete information about the initial

family of distributions Q and the structure of network G.

A2. For each a ∈ A there exists a marginal distribution Qa ∈ Q0(R) such that

Qa{l(i)a ≤ ca ≤ u(i)
a } ∈ (q(i)

a
, q(i)

a ),

whenever q(i)
a
< q

(i)
a , i ∈ Da.

A3. For each a ∈ A and any pair of subintervals in (2), namely, [l
(i1)
a , u

(i1)
a ] and

[l
(i2)
a , u

(i2)
a ], i1, i2 ∈ Da, we have l

(i1)
a 6= u

(i2)
a and l

(i2)
a 6= u

(i1)
a .

In Assumption A1 we envision that the user has some initial information

about the distribution of arc costs. For example, this information can be col-

lected beforehand by leveraging some historical data. Assumption A2 coincides

with the related assumption made by Wiesemann et al. [4] and serves as a con-

straint qualification condition for moment problems [21]. Finally, Assumption

A3 stipulates that the inner optimization problem in (Fos) has a finite maxi-

mum. It can also be argued that Assumption A3 is rather technical since, if,

e.g., l
(i1)
a = u

(i2)
a for some i1, i2 ∈ Da, then a sufficiently small perturbation of

the endpoints makes this assumption satisfied.

At first, we examine the one-stage formulation (Fos) without linear expec-

tation constraints (3), i.e.,

min
y∈Y

max
Q∈Q̃

EQ{c>y}, (F′os)
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where

Q̃a :=
{
Qa ∈ Q0(R): Qa{ca ∈ [l(i)a , u

(i)
a ]} ∈ [q(i)

a
, q(i)

a ] ∀i ∈ Da
}

and

Q̃ :=
{
Q ∈ Q0(R|A|) : Qa ∈ Q̃a

}
(5)

We prove that the resulting problem can be tackled by solving a particular

linear programming problem for each a ∈ A and a single deterministic shortest

path problem.

For simplicity of our further exposition we need the following preprocessing

step. For each arc a ∈ A from the baseline set [l
(i)
a , u

(i)
a ], i ∈ Da, of subintervals

we form a set [L
(j)
a , U

(j)
a ], j ∈ Wa := {1, . . .Wa}, of Wa ∈ Z+ elementary

subintervals [38]. Specifically, we consider a list of distinct interval endpoints,

that is,

{l(1)
a , u(1)

a , l(2)
a , u(2)

a , . . . l(Da)
a = la, u

(Da)
a = ua}

and sort them in a nondecreasing order. Regions of the resulting partitioning

of the interval [la, ua] are referred to as elementary subintervals and denoted by

[L
(j)
a , U

(j)
a ], j ∈ Wa. For any i ∈ Da we denote by Wa(i) ⊆ Wa the indices of

elementary subintervals contained in the baseline subinterval [l
(i)
a , u

(i)
a ].

Theorem 1 Suppose that y∗ ∈ Y and Q(w) ∈ Q0(R|A|) is an optimal solution

of (F′os). Then

� for each a ∈ A the worst-case expected cost EQ(w)
a
{ca} coincides with an

optimal objective function value of the following linear programming prob-

lem:

max
δa

∑
j∈Wa

U (j)
a δaj (6a)

s.t. δaj ≥ 0 ∀j ∈ Wa (6b)∑
j∈Wa

δaj = 1 (6c)
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q(i)
a
≤

∑
j∈Wa(i)

δaj ≤ q(i)
a , ∀i ∈ Da \ {1} (6d)

� an optimal path-incidence vector y∗ can be attained by solving a deter-

ministic shortest path problem of the form:

min
y∈Y

∑
a∈A

EQ(w)
a
{ca}ya (7)

The idea of the proof of Theorem 1 is to consider the worst-case expected

costs for each particular arc a ∈ A and then to reformulate the resulting mo-

ment problems by using strong duality [21] and some basic properties of the

elementary subintervals.

Next, we consider a general one-stage DRSPP (Fos) with both probability

constraints (2) and linear expectation constraints (3). It turns out that the DR-

SPP (Fos) can be recast as a robust shortest path problem with some polyhedral

uncertainty set. More specifically, the following result holds.

Theorem 2 Assume that

S0 := {c ∈ R|A| : L ≤ c ≤ U; Bc ≤ b},

where for each a ∈ A

La := min
Qa∈Q̃a

EQa
{ca}, (8a)

Ua := max
Qa∈Q̃a

EQa
{ca}, (8b)

and

Q̃a :=
{
Qa ∈ Q0(R): Qa{ca ∈ [l(i)a , u

(i)
a ]} ∈ [q(i)

a
, q(i)

a ] ∀i ∈ Da
}

Then the distributionally robust shortest path problem of the form (Fos) is equiv-
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alent to the following robust shortest path problem with polyhedral uncertainty:

min
y∈Y

max
c∈S0

c>y (9)

In fact, we prove that for each a ∈ A there exists a surjective mapping from

the set of marginal probability distributions Q̃a given by equation (5) onto a

set formed by linear expectation constraints

La ≤ EQa
{ca} ≤ Ua (10)

Also, in view of Theorem 2, we may recast the one-stage problem (Fos) as a

linear MIP problem by dualizing the second-level linear programming problem

in (9). Formally, the following corollary holds.

Proposition 1 Let

S0 :=
{
c ∈ R|A| : L ≤ c ≤ U; Bc ≤ b

}
=

{
c ∈ R|A| : B0c ≤ b0

}
(11)

Then the one-stage DRSPP (Fos) admits the following mixed-integer program-

ming reformulation:

z∗static = min
y,λ

{
b>0 λ : λ ≥ 0, −y + B>0 λ = 0, y ∈ Y

}
(12)

The linear MIP problem (12), in turn, can be tackled using off-the-shelf

mixed-integer programming software. In the next section we use the results of

Theorems 1 and 2 to derive a linear MIP reformulation of the related multi-

stage problem.

2.2 Multi-stage problem

We recall that in our multi-stage formulation the user is allowed to observe some

additional distributional information while traversing through the network G.

In this regard, we make the following additional assumptions:
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A4. In addition to the distributional constraints in Q, the user forms a list L
of auxiliary distributional constraints given by:

L :=
⋃

i∈N\{f}

{
Qa{ca ∈ [l̃(j)a , ũ(j)

a ]} ≤ q̃ (j)
a ∀j ∈ D̃a, ∀a ∈ FSi ; (13a)

EQ{
∑
a∈FSi

pjaca} ≤ pj0 ∀j ∈ K̃i
}
, (13b)

where, D̃a = {1, . . . , d̃a}, a ∈ A, and K̃i = {1, . . . , k̃i}, i ∈ N \ {f}, are

potentially empty sets of indexes.

A5. Each node i ∈ N is visited by the user at most once.

Assumption A4 indicates that the distributional constraints in Q and the

auxiliary constraints are of the same form. We also demonstrate that Assump-

tion A4 is necessary for deriving a linear MIP reformulation of the proposed

multi-stage optimization problem. With respect to Assumption A5, it can be

argued that, if the user returns to a node multiple times, then the attacker

may simply modify the underlying distribution of arc costs. In this situation

the user cannot exploit the previously collected distributional information and,

hence, it is not favorable for the user to visit nodes multiple times.

In the following example we provide some intuition behind the auxiliary

distributional constraints (13) as well as the first and second research questions,

Q1 and Q2, described in Section 1.3.

Example 1 We consider a network G depicted in Figure 1 with s = 1 and

f = 8. The arc costs are supposed to satisfy support constraints la ≤ ca ≤ ua

outlined inside each arc, i.e., ca ∈ [la, ua] with probability 1. Furthermore, we

introduce a unique linear expectation constraint given by:

EQ{
∑
a∈A′

ca} ≤ 1, (14)

where A′ := {(2, 4), (2, 5), (3, 6), (3, 7)}. Next, we consider three different cases

with respect to the additional distributional information observed by the user :

18



1

2

3

4

5

6

7

8
[0,0]

[0,0]

[0,0]

[0,0]
[0,1]

[0,1]
[0,0]

[0,0]

[0,1]

[0,1]

Figure 1: The network used in Example 1. The cost range is depicted inside each arc.

� Case 1 (no additional information). If the user picks a path first,

then it cannot observe any additional distributional information. The

worst-case expected loss incurred by the user is equal to 1.

� Case 2 (full information). The user picks a path after the attacker

reveals the actual distribution of arc costs, Q. Then the user’s worst-case

expected loss equals 0.25.

� Case 2 (successive revelation of information). Assume that, if the

user stays at node 2, then it may compare the expected costs of (2, 4) and

(2, 5). In other words, the attacker indicates whether the following linear

expectation constraint holds or not:

EQ{c(2,4) − c(2,5)} ≤ 0

In this case the worst-case expected loss incurred by the user equals 0.5.

Comparing the first and the third cases we conclude that the user may

benefit from using dynamic decisions. �

We encode all feasible attacker’s responses to the constraints in L with

binary vectors rj ∈ {0, 1}|L| for j ∈ {1, . . . , 2|L|}. In particular, rjm = 1, if the
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m-th constraint in L is satisfied and rjm = 0, otherwise. Also, let

Qj := Q∩
{
Q ∈ Q0(R|A|) s.t. the m-th constraint in L, if rjm = 1

an opposite of the m-th constraint in L, if rjm = 0

}
Irrespective of the order of the auxiliary distributional constraints in L, the

multi-stage DRSPP can be formulated as follows:

max
j∈{1,...,2|L|}

min
yj∈Y

max
Qj∈Qj

EQj
{c>yj}

s.t. non-anticipativity constraints with respect to yj, j ∈ {1, . . . , 2|L|},
(Fms)

where yj, j ∈ {1, . . . , 2|L|}, denotes a decision of the user under complete knowl-

edge of the vector of attacker’s responses, rj. Therefore, the user attempts to

minimize its worst-case expected loss for all possible realizations of attacker’s

responses and subject to some non-aniticipativity constraints.

We need to enforce non-anticipativity as long as the user learns the attacker’s

responses associated with some node i ∈ N\{f} only when it reaches the node i.

Therefore, for any fixed j, ` ∈ {1, . . . , 2|L|} the user’s paths Pj and P` (induced

by the incidence vectors yj and y`, respectively) must coincide whenever the

user is not able to distinguish between the ambiguity sets Qj and Q`.

Specifically, for any fixed j, ` ∈ {1, . . . , 2|L|}, j 6= `, we denote by Nj,` ⊆ N

a set of nodes at which the user may learn the actual ambiguity set, either

Qj or Q`, that is enforced by the attacker. Furthermore, for general graphs

we introduce new variables tj ∈ R|N | related to a sequence at which nodes

are visited by the user under the scenario yj. The next results provide non-

anticipativity constraints for acyclic and general graphs, respectively.

Proposition 2 Assume that j, ` ∈ {1, . . . , 2|L|}, j 6= `, and let G be a directed

acyclic graph. Then for each node i ∈ N \Nj,` the following constraints ensure
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non-anticipativity:

yj,a = y`,a ∀a ∈ FSi, if all nodes in Nj,` are reachable from i (15a)

|yj,a − y`,a| ≤
∑

n∈Ñj,`

∑
a′∈FSn

yj,a′ ∀a ∈ FSi,

if a subset of nodes Ñj,` ⊆ Nj,` is not reachable from i

}
(15b)

Proposition 3 Assume that j, ` ∈ {1, . . . , 2|L|}, j 6= ` and let G be a general

graph. Then for each node i ∈ N \ Nj,` the following constraints ensure non-

anticipativity:

tj,s = 0 (16a)

0 ≤ tj,i ≤ |N | − 1 ∀i ∈ N (16b)

tj,a1 − tj,a2 ≤ −1 + |N |(1− yj,a) ∀a ∈ A (16c)

|yj,a − y`,a| ≤
∑

n∈Nj,`
min

{
max{tj,i − tj,n; 0}+ 2−∑

a′∈FSn
yj,a′ −

∑
a′∈FSi

yj,a′;
∑

a′∈FSn
yj,a′

}
 ∀a ∈ FSi (16d)

It is worthy to mention that the outlined non-anticipativity constraints for

acyclic and general graphs, (15) and (16), can be expressed as linear constraints

by using some standard lianerization techniques.

The key observation that we use next is that each family of distributions

Qj, j ∈ {1, . . . , 2|L|}, in the multi-stage formulation (Fms) contains the same

types of distributional constraints as those in the initial ambiguity set Q; recall

Assumption A4. Therefore, in view of Theorem 2, each ambiguity set Qj,

j ∈ {1, . . . , 2L}, can be seen as some polyhedral uncertainty set

Sj :=
{
c ∈ R|A| : Bjc ≤ bj

}
⊆ S0 (17)

in terms of expected costs. Next, we provide a MIP reformulation of the multi-

stage problem (Fms).

Theorem 3 Let G be acyclic or general graph and assume that each ambiguity

set Qj, j ∈ {1, . . . , 2|L|}, is described by the polyhedral uncertainty set Sj given
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by equation (17). Then the multi-stage DRSPP (Fms) can be reformulated as

the following mixed-integer programming problem:

z∗dynamic = min
y,t,v,w,z

z (18a)

s.t. non-anticipativity constraints (15) or (16), (18b)

z ≥ b>j λj

−yj + B>j λj = 0

λj ≥ 0

yj ∈ Y


∀j ∈ {1, . . . , 2|L|} (18c)

The proof of Theorem 3 is based on Theorem 2 and standard linear program-

ming duality. In fact, the multi-stage DRSPP (Fms) can be solved at hand by

using off-the-shelf MIP solvers whenever the non-anticipativity constraints (15)

or (16) are linearized; recall the research question Q3.

3 Model I: summary of computational results

3.1 Numerical analysis of the one-stage problem

In this section we analyze the one-stage DRSPP (Fos) on a class of synthetic

randomly generated test instances. Specifically, by leveraging standard measure

concentration inequalities we construct the initial ambiguity set (4) from a given

training data set. Importantly, instead of a complete data set the user may

exploit linear combinations of arc costs with respect to some subsets of arcs

or interval-censored observations with respect to particular arcs; see Section

1.2 in the full version of the thesis for details. Next, we analyze the quality

of distributionally robust decisions as well as the computational complexity of

the MIP reformulation (12). The proposed approach is compared with several

other robust and distributionally robust optimization techniques in terms of

their out-of-sample performance.

Test instances and benchmark approaches. We consider a class of
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Figure 2: An acyclic layered graph with h = 3 intermediate layers and r = 3 nodes at each
layer. The source and the destination nodes are given by s = 1 and f = 11, respectively.

acyclic layered graphs that are assumed to contain h ∈ Z+ intermediate lay-

ers and r ∈ Z+ nodes at each layer. The first and the last layer consist of

unique nodes, which are the source and the destination nodes, respectively. For

example, a network with h = 3 and r = 3 is depicted in Figure 2.

With respect to the nominal marginal distributions Q∗a, a ∈ A, we assume

that the arc costs ca are governed by a generalized beta distribution over the in-

terval [la, ua]. The nominal distribution Q∗ is given by a product of the marginal

distributions Q∗a, a ∈ A. We introduce the following parameters of the initial

ambiguity set (4):

� n̂ ∈ Z+ is a number of samples for each a ∈ A;

� n1 ∈ Z+ is a number of subintervals for each a ∈ A in (2);

� κ ∈ (0, 1) is a relative width of the subintervals for each a ∈ A;

� η ∈ (0, 1) and η0 ∈ (0, 1) are a probability of violation for each individual

constraint and for the ambiguity set, respectively.

Both probability and linear expectation constraints, (2) and (3), are constructed

using Hoeffding inequality [39] given a probability of violation η for each con-

straint. Furthermore, the linear expectation constraints (3) are associated with

some specified set of paths from s to f in G.

In the computational study for the one-stage model we compare the pro-

posed formulation (Fos) with several other benchmark approaches. Specifically,
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Solution approach Nominal relative loss

DRSPP (F′os) 1.27 (0.11)

DRSPP (Fos) 1.19 (0.08)

DRSPP from [41] 1.55 (0.13)

RSPP from [40] with Γ = 0 2.14 (0.27)

RSPP from [40] with Γ = 7 1.85 (0.19)

RSPP from [40] with Γ = 14 1.85 (0.21)

RSPP from [40] with Γ = 21 2.13 (0.20)

Table 1: Let κ = 0.6 and n1 = 4. We report the average relative loss (19) and standard
deviations (in brackets) across 100 random instances.

we consider a robust optimization approach of Bertsimas et al. [40] with a

budget parameter Γ ∈ {0, 1, . . . , |A|} and a specialized distributionally robust

optimization model with a marginal moment ambiguity set from [41].

Measures of performance. For any path P̃ ∈ Psf(G), the associated

path incidence vector ỹ ∈ Y and a nominal distribution Q∗ we estimate the

quality of P̃ by leveraging a nominal relative loss

ρ0(ỹ,Q∗) :=
EQ∗{c>ỹ}

miny∈Y EQ∗{c>y}
(19)

Specifically, (19) reflects the ratio of the nominal expected loss incurred by the

user to the optimal expected loss in the full-information setting, i.e., when the

expected costs EQ∗a{ca}, a ∈ A, are known a priori.

Examples of numerical results. In the remainder of this section we set

h = 20, r = 10, n̂ = 100 and η0 = 0.05, if other is not specified. For each

a ∈ A we construct the support by setting la uniformly distributed on [0, 100]

and ua := la + ∆a, where ∆a is uniformly distributed on [0, 100].

As an example, we analyze the nominal relative loss (19) for the considered

robust and distributionally robust formulations of DRSPP. In Table 1 we report

the average relative loss (19) and standard deviations (in brackets) incurred by

the user across 100 random test instances for κ = 0.6 and n1 = 4.

We make the following observations:

� The robust formulation of Bertsimas et al. [40] does not exploit any dis-
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tributional information and, thus, provides overly conservative solutions.

� We ensure that our formulation of DRSPP (F′os) outperforms the moment-

based formulation in terms of the nominal relative loss.

� The out-of-sample performance of (Fos) is improved when the linear ex-

pectation constraints are incorporated into the model.

In the full version of this thesis we also analyze the nominal relative loss (19)

as a function of the relative width of baseline subintervals, κ, and the number of

subintervals, n1. Finally, we show that solution times for the MIP formulation

(12) are reasonably small and scale well in the number of layers, h.

3.2 Numerical analysis of the multi-stage problem

In this section we explore whether it is favorable for the user to employ dynamic

decisions. In other words, the role of the auxiliary distributional constraints (13)

is analyzed in relation to the quality of dynamic decisions and tractability of

the MIP reformulation (18).

Test instances. We consider two classes of fully connected layered graphs

that are either acyclic or contain directed cycles. Acyclic layered graphs coincide

with those considered for the one-stage problem. General graphs are, in turn,

obtained from acyclic graphs assuming that the arcs not adjacent to s and f

can be traversed in both directions.

Similar to the test instances for the one-stage problem, we suppose that the

arc costs ca are governed by a beta distribution but with a support given by

[0, 1] for each a ∈ A. The nominal marginal distributions Q∗(i,j) and Q∗(j,i) are

assumed to be the same for any (i, j) ∈ A. The nominal distribution Q∗ is

defined as a product of the marginal distributions Q∗a, a ∈ A.

The initial ambiguity set is supposed to contain only linear expectation

constraints with respect to the sum of arc costs ca, a ∈ FSi∪RSi for each i ∈ N .

The upper bound on the aforementioned sum can be seen as an attacker’s budget

allocated at node i and is obtained from the training data set by leveraging
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Figure 3: An example of random sensors allocation for a layered graph with h = r = 2. The
sensors are highlighted in blue.

Hoeffding inequality. We do not consider some more involved ambiguity sets as

our focus is on the role of the auxiliary distributional constraints (13).

For simplicity, we suppose that the auxiliary constraints are restricted by the

linear expectation constraints of the form (13b), which are constructed using

information from sensors (the case of probability constraints is considered in

the full version of the thesis). That is, each node is assumed to be equipped

with a sensor with some fixed probability; see, e.g., Figure 3. We suggest three

types of auxiliary expectation constraints given by:

� individual constraints corresponding to the adjacent sensors, e.g., con-

straints for the expected cost of (1, 2), (2, 4) and (2, 5) in Figure 3.

� difference constraints, e.g., constraints with respect to the difference of

expected costs of (3, 4) and (3, 5) in Figure 3.

� sum constraints, e.g., constraints with respect to the sum of expected

costs of (3, 4) and (3, 5) in Figure 3 (we use these constraints, if at least

one of the arcs can be traversed in both directions.)

We collect a required number of the auxiliary constraints by selecting a

random node and a random constraint associated with this node. Also, we

distinguish between the data set used to construct the initial ambiguity set and

an auxiliary data set used to verify the auxiliary constraints. In particular, the
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auxiliary constraints can be verified at some prescribed confidence level using

Hoeffding inequality; see Section 2.2.2 in the full version for further details.

Performance metrics. We propose the following two-step procedure for

validation of our approach. In the first step, we construct the initial ambigu-

ity set Q and solve the MIP reformulation (18) to obtain an estimate of the

optimal user’s decision for every feasible vector of attacker’s responses. In the

second step or the constraint verification procedure, we attempt to identify the

actual sequence of attacker’s responses by verifying the auxiliary distributional

constraints (13) dynamically at the respective nodes of the user’s path.

The quality of dynamic decisions in the first step is estimated using a relative

gap of the form:

ρ1 := 100×
z∗static − z∗dynamic
z∗static − zlower

, (G1)

where zlower provides some lower bound on objective function value of the multi-

stage problem (Fms). Specifically, we select zlower as an optimal objective func-

tion value of the related max-min problem, i.e., the one-stage problem (Fos),

where the order of “max” and “min” operators is reversed. The relative gap

ρ1 ∈ [0, 100] quantifies the user’s profit (in percentages) obtained from using

dynamic decisions (in relation to the static problem formulation).

On other hand, the quality of the constraint verification procedure is defined

as:

ρ2 := 100×
z∗dynamic − z̃dynamic
z∗static − zlower

, (G2)

where z̃dynamic is our estimate of the worst-case expected loss after the constraint

verification procedure. It can be argued that the sum ρ1 + ρ2 characterizes the

total value (in percentages) by which the difference z∗static−zlower can be reduced.

In fact, ρ2 is nonnegative but the actual upper bound is not well-defined.

Examples of numerical results. One of the most important questions

is to explore how the quality of adaptive decisions scales in the number of

auxiliary constraints. In particular, for different parameter settings we compute

the average relative gaps (G1) and (G2) and the average running time (with

mean absolute deviations) across 50 test instances.
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Number of constraints
Acyclic graphs

ρ1 (MAD) in % ρ2 (MAD) in % average time (MAD) in sec.

|L| = 1 2.0 (3.5) 1.5 (2.8) 0.04 (0.02)

|L| = 2 4.8 (7.2) 5.8 (9.1) 0.07 (0.02)

|L| = 3 6.3 (8.9) 8.3 (11.7) 0.17 (0.07)

|L| = 4 8.3 (10.0) 11.3 (14.1) 0.67 (0.33)

|L| = 5 10.2 (11.6) 12.2 (15.2) 3.8 (2.85)

Table 2: Let h = r = 3, n̂ = ñ = 60 and assume that the graph is acyclic. We report
the average relative gaps (G1) and (G2) and the average running times in seconds with mean
absolute deviations (in brackets) over 50 random test instances.

Number of constraints
General graphs

ρ1 (MAD) in % ρ2 (MAD) in % average time (MAD) in sec.

|L| = 1 1.8 (3.2) 3.3 (5.9) 0.08 (0.05)

|L| = 2 3.6 (6.0) 4.4 (7.3) 0.28 (0.10)

|L| = 3 4.9 (7.1) 9.1 (13.1) 10.1 (6.71)

|L| = 4 - - > 600

|L| = 5 - - > 600

Table 3: Let h = r = 3, n̂ = ñ = 60 and assume that the graph is general. We report
the average relative gaps (G1) and (G2) and the average running times in seconds with mean
absolute deviations (in brackets) over 50 random test instances.

We introduce the following parameters:

� ζ ∈ (0, 1) is a probability that a sensor is placed at each node;

� n̂ ∈ Z>0 is a number of samples in the initial data set;

� ñ ∈ Z>0 is a number of samples in the auxiliary set;

� η0 ∈ (0, 1) is a probability of violation for the initial ambiguity set;

� γ ∈ (0, 1) is a confidence level for each auxiliary constraint.

Let η0 = 0.05, γ = 0.95 and ζ = 0.5, h = r = 3 and n̂ = ñ = 60. For each

test instance we increase the number of the auxiliary constraints, |L|, from 1

to 5. The results for acyclic and general graphs are reported, respectively, in

Tables 2 and 3.

The observations from our computational results can be summarized as

follows:
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� Augmenting the set of auxiliary constraints provides more information for

the user and, thus, improves the quality of both adaptive decisions and

the constraint verification procedure.

� The multi-stage problem (Fms) becomes more computationally complex

for general graphs and with the increase of |L|. This fact is rather intuitive

as the number of variables and constraints in (Fms) is exponential in |L|
and increases for general graphs.

Admittedly, the primary application of our approach is to networks of a rel-

atively small size, in which solutions with a sufficiently high quality can be

derived within a reasonable time. It can be also argued that most of exist-

ing solution approaches to multi-stage problems with binary recourse decisions

can only be applied to instances of a moderate size; see, e.g., the studies in

[27, 42, 43] and the references therein.

4 Model II: problem formulation and solution

approach

Notation. In the formulation of Model II we use the following notations. As

for Model I, we consider a connected weighted directed graph G = (N,A, c).

For A′ ⊆ A we define a subgraph of G induced by this subset of arcs as G[A′] =

(N,A′, c′), i.e., the set of arcs is reduced to A′ and c′ := {ca, a ∈ A′}. The

number of decision epochs (or rounds) and the attacker’s budget are denoted

by T ∈ Z>0 and k ∈ Z>0, respectively. Also, let `(P ) be the cost of a path

P ∈ Psf(G), that is, `(P ) =
∑

a∈P ca. Finally, we define

z∗(G) = min
P∈Psf (G)

`(P ),

i.e., z∗(G) is the cost of the shortest path from s to f in G.
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4.1 Problem formulation

As outlined in Section 1.3, we assume that the user has full information about

the underlying network, while the attacker initially observes a subnetwork G[A0]

of the given network G, i.e., it is informed only about the existence of arcs in

A0 along with their costs. In each decision epoch t ∈ {1, 2, . . . , T} the following

sequence of events takes place:

1. The attacker selects a set It ⊆ At−1 of at most k arcs to be blocked for

the time of exactly one decision epoch.

2. The user traverses along a path Pt ∈ Psf(G[A \ It]). We refer to `(Pt)

as the user’s instantaneous loss. The user also reveals the arcs in Pt and

their costs to the attacker.

3. The attacker updates the information available to it, i.e., At = At−1 ∪ Pt.

We assume that the user attempts to minimize its cumulative loss over T

rounds, while the attacker is restricted to act greedily in each decision epoch.

More precisely, we make the following assumptions:

A1’. In each round the attacker acts first. Furthermore, the attacker is

greedy in the sense that it always blocks a set of k-most vital arcs in the observed

network, i.e.,

It ∈ argmax{z∗(G[At−1 \ I]) : I ⊆ At−1, |I| ≤ k}. (20)

A2’. The graph G is not trivially k-separable, that is, any subset of k arcs

in G is not an s− f cut.

A3’. If there is more than one possible choice for It, then the attacker

blocks arcs following a well-defined deterministic rule, which is consistent in

the sense that if It is chosen from a collection of blocking solutions I, then it

is also chosen from any collection of solutions Ĩ ⊆ I containing It.

A4’. The user has full information about the graph’s structure, costs and
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the attacker’s budget, k. The user observes the attacker’s actions before choos-

ing a path and cannot use interdicted arcs.

A5’. The attacker is initially given information only about a subnetwork

G[A0]. Each round it observes a path Pt selected by the user and the costs ca

of each arc a ∈ Pt.
Assumptions A1’-A5’ are mostly technical and form some basic properties

of our problem setting for Model II. In particular, Assumption A3’ implies that

the attacker’s policies are deterministic. The consistency assumption mimics an

analogous assumption in [12] for the user’s policies. For example, one can think

that in each decision epoch the attacker ranks all feasible blocking solutions

in the observed network based on some criteria, e.g., their costs to the user,

resolving ties according to any deterministic criteria. Then the attacker selects

the highest-ranked blocking solution from such a list.

The second part of Assumption A5’ represents the case of perfect (or trans-

parent) feedback from the user to the attacker, similar to the studies in [12, 13].

We exploit the second part of Assumption A5’ in derivations of our theoretical

results, while we relax this assumption in our computational study.

In view of the discussion above, the user’s problem can be formulated as the

following repeated hierarchical combinatorial optimization problem:

min
Pt

T∑
t=1

`(Pt) :=
T∑
t=1

∑
a∈Pt

ca (21a)

s.t. Pt ∈ Psf(G[A \ It]) ∀t ∈ {1, . . . , T}, (21b)

It ∈ argmax{z∗(G[At−1 \ I]) : I ⊆ At−1, |I| ≤ k} ∀t ∈ {1, . . . , T},
(21c)

At = At−1 ∪ Pt ∀t ∈ {1, . . . , T}, (21d)

where the user’s objective function in (21a) represents the sum of the user’s

instantaneous losses over T decision epochs. The constraints (21b) ensure that

Pt does not include arcs, which are blocked by the attacker at round t. The

constraints (21c) require It to be a set of k-most vital arcs in G[At−1] (recall
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Assumption A1’), i.e., (21c) imply a hierarchical decision-making structure of

the overall repeated problem. Finally, the constraints (21d) indicate that a set of

arcs known to the attacker at round t is updated according to Assumption A5’.

In the following, we assume that the attacker is a greedy semi-oracle. For-

mally, the greedy semi-oracle selects a set of the k-most vital arcs It ⊆ At−1 in

G[At−1] so as to maximize the user’s instantaneous loss `(P π
t ) under the user’s

policy π in round t. We also provide a technical requirement that the greedy

semi-oracle maximizes |It| as his auxiliary objective.

Next, we provide an illustrative example comparing a greedy user and a

“strategic” one, i.e., which follows a more sophisticated policy than simply a

greedy one. We denote by P SP
t and P SE

t , t ≥ 1, the user’s decisions under a

greedy and a strategic policy, respectively. In addition, the cumulative loss of

the user under some policy π over T rounds is defined as follows:

LπT :=
T∑
t=1

`(P π
t )

Example 2 The graph G used in this example, is provided in Figure 4. Let

s = 1 and f = 4 be the user’s source and destination nodes, respectively, and

M be a real number such that M > 5. We also set T = 2, k = 2 and A0 = ∅.
First, we assume that the user is greedy. Since A0 = ∅, we have I1 = ∅

and in the first round the greedy user follows the shortest available path given

by P SP
1 = {1 → 2 → 3 → 4}. Then we observe that A1 = P SP

1 and, thus,

any subset of arcs of P SP
1 is also an optimal solution of the k-most vital arcs

problem in G[A1].

Next, we recall that the attacker is a greedy semi-oracle. Hence, the at-

tacker knows that the user’s policy π is greedy and attempts to maximize the

user’s instantaneous loss `(P π
2 ) = z∗(G[A \ Iπ2 ]) in the second decision epoch.

We conclude that the attacker blocks arcs (1, 2) and (3, 4), which implies that

ISP2 = {(1, 2), (3, 4)} and P SP
2 = {1→ 5→ 4}. In particular, |I2| = 2 = k and

the blocking solution with the maximal possible cardinality is selected. As a

result, the cumulative loss of the greedy user is given by LSP2 = 3 +M .
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Figure 4: The network used in Example 2. For the costs of arcs (1, 4) and (1, 5) we assume
that M > 5.

Then we consider a strategic user, who sequentially traverses through the

arc-disjoint paths P SE
1 = {1 → 2 → 4} and P SE

2 = {1 → 3 → 4}. In this case

ISE2 = {(1, 2), (2, 4)} and the cumulative loss of the strategic user is given by

LSE2 = 4 + 4 = 8 < LSP2 . �

Example 2 illustrates that, if the user is aware that the attacker is greedy,

then it can exploit this fact to decrease its own cumulative loss. Furthermore,

we observe that the paths used by the strategic user have some arcs in common

with the shortest path; some theoretical justification for these observations is

provided in Section 4.3. Finally, it is rather straightforward to verify that the

greedy user’s policy can be dominated by a strategic policy for arbitrarily large

T ≥ 2 and nonempty A0.

4.2 Computational complexity

Next, we show that the user’s problem is NP -hard even in the case of T = 2

and for network instances where the interdiction problem in G[A0] and G[A1]

can be solved in polynomial time. In this regard, we define a decision version

of the user’s problem (UP) for T = 2:

Problem 2-UP.

Instance: a network G along with source and destination nodes s and f , a
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subset of arcs A0 known to the attacker, an interdiction budget k ∈ Z>0 and a

threshold l ∈ R>0.

Question: is there two paths P1, P2 ∈ Psf(G) of total cost at most l that can

be traversed sequentially by the user given that the attacker is a greedy semi-

oracle? �

Theorem 4 Problem 2-UP is strongly NP -complete for the class of network

instances where the interdiction problem (in G[A0] and G[A1]) is polynomially

solvable.

The proof of Theorem 4 is based on a reduction from a Boolean satisfiability

problem problem (3-SAT), where for any instance of 3-SAT we construct a

particular instance of the 2-UP problem. Following the discussion above we

construct the instance of 2-UP such that feasibility of any user’s solution can

be checked in polynomial time with respect to the number of arcs, i.e., the

k-most vital arcs problem in both G[A0] and G[A1] is polynomially solvable.

Our construction is inspired and similar to the one used in [44], where it is

shown that the problem of finding two minimum-cost arc-disjoint paths with

non-uniform costs (e.g., changing over time or type of flow) is strongly NP -

complete. However, our problem setting requires a somewhat different arc cost

structure and the use of “unremovable arcs”; see Section 3.2 of the full version.

4.3 Basic analysis of user’s policies

In view of Theorem 4, it is natural to explore some analytical properties of

optimal user’s policies in a simple case, i.e., when T = 2 and A0 = ∅, and then

exploit these properties to propose a heuristic algorithm for an arbitrary set of

initial information and any time horizon.

First, under some rather mild assumption we show that an optimal solution

of the user’s problem (21) with T = 2 and A0 = ∅ is either greedy or consists of

two distinct paths that intersect with the shortest path in the non-interdicted

network. In order to simplify our derivations, we assume that the costs of all
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possible paths from s to f are distinct. Thus, we can enumerate them in the

strictly increasing order of their costs, i.e.,

`(P (1)) < `(P (2)) < . . . < `(P (µ)), (22)

where |Psf(G)| = µ. We also denote by ν(P ) the index of a path P ∈ Psf(G)

in the above ordering. The following results hold.

Lemma 1 Let A0 = ∅, k ≥ 1 and assume that the user is greedy. If we denote

by r the index of a path traversed by the user at t = 2, i.e., r = ν(P SP
2 ), then

for any z ∈ {1, 2, . . . , r − 1} the path P (z) is blocked by the attacker at t = 2.

Theorem 5 Assume that the attacker is a greedy semi-oracle with A0 = ∅
and k ≥ 1. Let T = 2 and r = ν(P SP

2 ), where r ≥ 2. If POPT
1 = P (i) and

POPT
2 = P (j) is an optimal solution of the user’s problem for T = 2, then either

i = 1 and j = r, or P (i) and P (j) satisfy the following conditions:

P (i) ∩ P (1) 6= ∅ and P (j) ∩ P (1) 6= ∅, (23)

`(P (1)) + `(P (r)) > `(P (i)) + `(P (j)), (24)

1 < i < r, 1 < j < r and i 6= j. (25)

The proof of Lemma 1 follows from the definition of a greedy user’s policy,

while the proof of Theorem 5 is based on Lemma 1 and the fact that the at-

tacker is a greedy semi-oracle. Theorem 5 implies that there exist two mutually

exclusive alternatives: either the greedy user’s policy is optimal for T = 2 and

A0 = ∅ or there exists a more preferable user’s solution, which consists of two

distinct paths, P (i) and P (j), that both have some arcs in common with the

shortest path from s to f in the non-interdicted graph; see (23).

One natural question arising next is whether these two distinct paths of the

latter alternative are either arc-disjoint or intersect by themselves as well. In

the full version of the thesis we demonstrate that for T = 2 and A0 = ∅ the

optimal solution is greedy when k = 1 and arc-disjoint for sufficiently large
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values of k. At the same time, an optimal user’s solution may be somewhat

non-trivial whenever k exceeds 2 but also is not too large.

We conclude that in general both greedy and arc-disjoint user’s solutions can

be suboptimal. However, the necessary conditions given by Theorem 5 provide

us some intuition that we exploit in the design of a heuristic algorithm for the

strategic user.

The key idea of our algorithm is based on a two-step “look-ahead” concept.

Specifically, in each decision epoch the user has two options: either it follows the

greedy policy or seeks two alternative paths that can be traversed sequentially

with the cumulative cost that does not exceed the loss obtained by the greedy

approach. The pair of alternative paths is generated in a heuristic manner by

blocking a subset of arcs of some predefined cardinality of the shortest path

in the network and then verifying that the conditions (23)-(24) of Theorem 5

are satisfied. It is important to note that due to its two-step look-ahead idea

our algorithm can be applied in an iterative manner for an arbitrary time hori-

zon T and a set of initial information A0. We skip further details about the

algorithm for brevity and refer to Section 3.4 in the full version of the thesis for

the pseudocode.

5 Model II: summary of computational results

In this section we compare the proposed heuristic algorithm for a strategic user

with the greedy user’s policy. We show that the heuristic approach performs

sufficiently well even for rather large values of T (recall that our algorithm is my-

opic as it generates decisions only for at most two time epochs) and consistently

outperforms the greedy policy on several classes of synthetic network instances.

In addition to the perfect feedback scenario (recall Assumption A5’), we

also consider a noisy feedback scenario, where for each arc initially not known

to the attacker but traversed by the user at decision epoch t, i.e., a ∈ Pt \At−1,

the attacker does not obtain the perfect information about the actual cost of

this arc but observes a noisy realization of its nominal cost. In other words, we
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relax Assumption A5’ to reflect more realistic interdiction scenarios.

Test instances. The test instances used in our experiments are represented

by three classes of random graphs, i.e.,

� Layered graphs. The first and the last layers consist of the source and

destination nodes, respectively; the arcs between layers are generated with

some predefined probability (the probability is the smaller the larger the

“distance” between layers).

� Uniform graphs [45]. A directed arc between any pair of nodes exists with

some fixed probability. The source and the destination nodes are selected

so that the distance between them is approximately a half of the diameter.

� BA graphs [46]. These graphs are constructed based on the preferential

attachment mechanism. The source and the destination nodes are selected

as for uniform graphs.

The set of arcs A0 initially available to the attacker is generated using a

number of randomly generated paths from s to f in G. As outlined above,

we consider two types of information feedback from the user to the attacker,

namely, perfect and noisy feedback. The perfect feedback satisfies Assump-

tion A5’. The noisy information feedback is generated from the uniform distri-

bution over intervals centered at the nominal values of arc costs. Finally, we use

the solution approach from [15] to solve the k-most vital arcs problems arising

from the attacker’s perspective.

Measures of performance. In each experiment we generate a number of

test instances, i.e., random graphs of a specified type, for some fixed values of

the attacker’s budget k and the time horizon T . Then we denote by χ=(T, k)

the percentage of test instances in a particular experiment, in which the perfor-

mance of the greedy policy and the proposed heuristic approach coincide, i.e.,

the user’s losses obtained by these methods are the same. Also, let χ<(T, k) be

the percentage of test instances, in which the heuristic outperforms the greedy

policy. Then the percentage of test instances, in which the heuristic approach
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T = 2 T = 5 T = 10
k χ< χ= χ> χ< χ= χ> χ< χ= χ>

1 4.0 (3.3) 96.0 (3.3) 0.0 (0.0) 5.2 (3.8) 94.4 (4.0) 0.4 (0.8) 5.2 (3.8) 94.4 (4.0) 0.4 (0.8)
2 7.0 (5.0) 93.0 (5.0) 0.0 (0.0) 9.2 (3.6) 87.6 (6.1) 3.2 (2.9) 9.8 (4.1) 86.0 (6.4) 4.2 (3.2)
3 9.2 (4.1) 90.8 (4.1) 0.0 (0.0) 18.2 (4.1) 76.4 (3.8) 5.4 (3.2) 24.2 (8.8) 69.6 (7.7) 6.2 (3.4)
4 10.6 (6.2) 89.4 (6.2) 0.0 (0.0) 23.0 (5.2) 68.8 (7.0) 8.2 (5.0) 31.4 (6.3) 53.2 (6.8) 15.4 (6.8)
5 14.2 (5.2) 85.8 (5.2) 0.0 (0.0) 32.2 (8.8) 57.8 (9.8) 10.0 (2.0) 44.2 (4.3) 34.0 (5.7) 21.8 (2.6)
6 15.0 (3.6) 85.0 (3.6) 0.0 (0.0) 37.6 (7.1) 50.8 (8.1) 11.6 (3.9) 45.0 (6.7) 28.0 (5.8) 27.0 (7.1)
7 15.0 (5.8) 85.0 (5.8) 0.0 (0.0) 35.4 (6.3) 53.7 (5.5) 10.9 (6.0) 50.7 (5.2) 26.5 (7.8) 22.8 (6.1)
8 14.2 (3.9) 85.8 (3.9) 0.0 (0.0) 36.6 (8.0) 50.4 (7.5) 13.0 (6.3) 48.6 (4.4) 24.8 (6.2) 26.6 (6.2)
9 16.0 (4.0) 84.0 (4.0) 0.0 (0.0) 42.4 (6.2) 47.4 (5.7) 10.2 (4.9) 57.1 (5.0) 17.3 (3.7) 25.5 (6.2)
10 20.0 (3.1) 80.0 (3.1) 0.0 (0.0) 46.4 (6.2) 42.8 (4.7) 10.8 (3.6) 61.8 (5.4) 14.3 (4.7) 23.9 (5.6)

Table 4: Comparison of the greedy policy against the heuristic for the strategic user in the
layered random graphs. The attacker’s feedback is transparent. For each pair of values of k
and T , we report the averages and standard deviations of χ<(T, k), χ=(T, k) and χ>(T, k) for
10 experiments with 100 test instances.

T = 2 T = 5 T = 10
k χ< χ= χ> χ< χ= χ> χ< χ= χ>

1 4.0 (2.2) 96.0 (2.2) 0.0 (0.0) 10.0 (3.2) 88.6 (3.0) 1.4 (0.9) 9.0 (3.6) 88.6 (3.0) 2.4 (1.5)
2 10.2 (3.3) 89.8 (3.3) 0.0 (0.0) 21.4 (5.7) 72.2 (7.2) 6.4 (4.1) 26.2 (5.4) 67.4 (6.1) 6.4 (3.4)
3 10.4 (2.8) 89.6 (2.8) 0.0 (0.0) 27.2 (5.5) 66.8 (6.1) 6.0 (3.0) 37.6 (5.5) 51.4 (5.1) 11.0 (3.9)
4 10.2 (4.7) 89.8 (4.7) 0.0 (0.0) 30.6 (5.4) 60.8 (6.9) 8.6 (4.2) 49.6 (5.1) 36.2 (7.0) 14.2 (4.4)
5 13.2 (4.5) 86.8 (4.5) 0.0 (0.0) 32.5 (7.7) 58.1 (7.7) 9.4 (3.0) 48.1 (7.9) 28.8 (4.8) 23.1 (6.0)
6 17.0 (5.0) 83.0 (5.0) 0.0 (0.0) 37.2 (5.0) 52.2 (5.5) 10.6 (6.0) 53.9 (4.6) 21.2 (6.5) 24.9 (4.4)
7 16.8 (5.2) 83.2 (5.2) 0.0 (0.0) 42.8 (5.7) 47.0 (7.4) 10.2 (3.0) 58.4 (4.8) 19.5 (5.8) 22.0 (3.4)
8 18.2 (6.8) 81.8 (6.8) 0.0 (0.0) 42.4 (6.5) 48.8 (8.8) 8.8 (3.0) 57.9 (7.4) 19.2 (6.7) 22.9 (4.8)
9 15.2 (3.7) 84.8 (3.7) 0.0 (0.0) 42.2 (5.6) 45.8 (6.3) 12.0 (4.7) 61.4 (5.0) 16.6 (6.1) 22.0 (6.0)
10 17.0 (4.6) 83.0 (4.6) 0.0 (0.0) 44.8 (5.9) 43.2 (5.5) 12.0 (4.9) 59.5 (4.2) 16.3 (5.1) 24.3 (6.1)

Table 5: Comparison of the greedy policy against the heuristic for the strategic user in the
layered random graphs. The attacker’s feedback is noisy. For each pair of values of k and
T , we report the averages and standard deviations of χ<(T, k), χ=(T, k) and χ>(T, k) for 10
experiments with 100 test instances.

is outperformed by the greedy policy is given by:

χ>(T, k) = 100− χ<(T, k)− χ=(T, k).

We use χ=, χ< and χ> as the performance measures of the proposed heuristic.

Examples of numerical results. We consider random layered graphs with

h = 10 intermediate layers. The number of nodes at each layer is generated

according to a discrete uniform distribution over the interval [4, 6]. An arc

between a pair of nodes from the i-th and the j-th layers is generated with

probability p
j−i , where we set p = 0.5. Furthermore, the source node is connected

by a directed arc to all nodes in layer 2, while all nodes in layer h − 1 are
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connected to the destination node. All arc costs are generated according to a

discrete uniform distribution over the interval [0, 100|j − i|]. Finally, we refer

to Section 4.1 in the full version of the thesis for a detailed discussion behind

our choice of the heuristic parameters.

We set k ∈ {1, . . . , 10}, T ∈ {2, 5, 10} and repeat the experiment 10 times.

In Table 4 we report the average values and standard deviations with respect

to χ<(T, k), χ=(T, k) and χ>(T, k). In Table 5 the same computational results

are provided assuming that the feedback is noisy.

The key observations can be summarized as follows:

� By construction, our heuristic algorithm always outperforms the greedy

policy in the case of T = 2;

� For a fixed value of k, the value of χ<(T, k) tends to grow with the increase

in T . In fact, as the number of decision epochs increases, there are more

opportunities for the strategic user to improve its performance.

� The value of χ>(T, k) also increases in T . This observation is rather

intuitive, if one recalls that the heuristic computes user’s decisions only

for at most two decision epochs.

� In all cases we have that χ<(T, k) > χ>(T, k) on average, which implies

that the user should prefer using the heuristic to the greedy policy.

As a remark, in the full version of the thesis we show that the running

time of the proposed heuristic algorithm does not exceed 3 seconds (in average)

for all considered values of the parameter k. Finally, we demonstrate that the

outlined results are pretty consistent with respect to all considered classes of

graphs and types of feedback received from the user to the attacker; see Section

4.2 in the full version of the thesis.
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6 Conclusions

In this thesis we consider the shortest path problem with different forms of

uncertainty. The problem is posed as a zero-sum game between two decision-

makers, namely, a user and an attacker. The user traverses between two fixed

nodes in the network, while the attacker controls either the arc costs in the

given network or their probability distribution.

In the first model, Model I, the structure of the underlying network is as-

sumed to be deterministic, while the arc costs/are travel times are subject to

uncertainty. For this model we consider one- and multi-stage distributionally

robust formulations of the shortest path problem (DRSPP), where the family of

distributions is formed by linear expectation constraints with respect to some

subsets of arcs and individual probability constraints with respect to particular

arcs. The main results for Model I can be summarized as follows:

� We show that our distributional constraints can be constructed and veri-

fied using incomplete or partially observable data.

� For both one- and multi-stage problems equivalent linear mixed-integer

programming (MIP) reformulations are proposed.

� We demonstrate numerically that our approach is competitive against

some basic robust and distributionally robust optimization techniques.

� Also, we show that for networks of a relatively small size it is more prefer-

able for the user to resort to adaptive decisions instead of the static ones.

In the second model, Model II, we consider uncertainty in the structure of

the network assuming the arc costs/travel times are deterministic. Specifically,

we introduce a multi-stage network game between a user and an attacker, where

the attacker has incomplete initial information about the network structure and

costs. The attacker is assumed to act in a greedy manner by blocking at most

k arcs known to it for the duration of one decision epoch. By observing the

paths selected by the user in each decision epoch, the attacker learns about
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the existence and precise costs of the associated arcs and, thus, can adjust its

actions in the subsequent decision epochs.

The results for Model II are summarized as follows:

� We analyze the user’s perspective and show that the user’s problem is

computationally hard even for two decision epochs assuming that the

attacker’s problem in each decision epoch is polynomially solvable.

� We derive basic constructive properties of optimal user’s policies for two

decision epochs when the attacker has no initial information about the

network structure.

� A new heuristic algorithm is designed with respect to an arbitrary time

horizon and any initial information available to the attacker. Our compu-

tational experiments demonstrate that the proposed heuristic algorithm

typically outperforms the greedy user’s policy, i.e., the policy where the

user selects the shortest available path in each decision epoch.
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